
Webpack



Webpack
webpack is a module bundler for modern JavaScript applications. When webpack processes your 

application, it recursively builds a dependency graph that includes every module your application 

needs, then packages all of those modules into a small number of bundles - often only one - to be 

loaded by the browser.



Final Result



Core Concepts
▶ Entry: webpack creates a graph of all of your application's dependencies. The starting point of 

this graph is known as an entry point. The entry point tells webpack where to start and follows 
the graph of dependencies to know what to bundle. You can think of your application's entry 
point as the contextual root or the first file to kick off your app.

▶ Output: Once you've bundled all of your assets together, you still need to tell 
webpack where to bundle your application. The webpack output property tells webpack how to 
treat bundled code.



Core Concepts
▶ Loaders: The goal is to have all of the assets in your project be webpack's concern and not the 

browser's (though, to be clear, this doesn't mean that they all have to be bundled together). 
webpack treats every file (.css, .html, .scss, .jpg, etc.) as a module. However, webpack 
itself only understands JavaScript. Loaders in webpack transform these files into modules as 
they are added to your dependency graph.

▶ Plugins: While Loaders only execute transforms on a per-file basis, plugins are most commonly 
used to perform actions and custom functionality on "compilations" or "chunks" of your bundled 
modules (and so much more!). The webpack Plugin system is extremely powerful and 
customizable.



Entry
There are multiple ways to define the entry property in webpack configuration.

▶ Single Entry (Shorthand) Syntax

Usage: entry: string|Array<string>

The single entry syntax for the entry property is a shorthand for:

Passing an array of file paths to the entry property creates what is known as a "multi-main 
entry". This is useful when you would like to inject multiple dependent files together and 
graph their dependencies into one "chunk".



Entry
▶ Object Syntax

Usage: entry: {[entryChunkName: string]: string|Array<string>}

This is the most scalable way of defining entry/entries in your application.

"Scalable webpack configurations" are ones that can be reused and combined with other 
partial configurations. This is a popular technique used to separate concerns by environment, 
build target and runtime. They are then merged using specialized tools like webpack-merge.



Scenarios
Below is a list of entry configurations and their real-world use cases:

▶ Separate App and Vendor Entries

Usage: entry: {[entryChunkName: string]: string|Array<string>}

➢ What does this do? At face value this tells webpack to create dependency graphs starting 
at both app.js and vendors.js. These graphs are completely separate and independent of 
each other (there will be a webpack bootstrap in each bundle). This is commonly seen with 
single page applications which have only one entry point (excluding vendors).

➢ Why? This setup allows you to leverage CommonsChunkPlugin and extract any vendor 
references from your app bundle into your vendor bundle, replacing them 
with __webpack_require__() calls. If there is no vendor code in your application bundle, 
then you can achieve a common pattern in webpack known as long-term vendor-caching.



Scenarios
▶ Multi Page Application

Usage: entry: {[entryChunkName: string]: string|Array<string>}

➢ What does this do? We are telling webpack that we would like 3 separate dependency 
graphs (like the above example).

➢ Why? In a multi-page application, the server is going to fetch a new HTML document for 
you. The page reloads this new document and assets are redownloaded. However, this gives 
us the unique opportunity to do multiple things:

▪ Use CommonsChunkPlugin to create bundles of shared application code between each 
page. Multi-page applications that reuse a lot of code/modules between entry points 
can greatly benefit from these techniques, as the amount of entry points increase.



Output
Configuring the output configuration options tell webpack how to write the compiled files to disk. 
Note that, while there can be multiple entry points, only one output configuration is specified.

▶ Usage

The minimum requirements for the output property in your webpack config is to set its value to 
an object including the following two things:

➢ A filename to use for the output file(s).

➢ An absolute path to your preferred output directory.



Output
▶ Multiple Entry Points

If your configuration creates more than a single "chunk" (as with multiple entry points or when 
using plugins like CommonsChunkPlugin), you should use substitutions to ensure that each file 
has a unique name.



Loaders
Loaders are transformations that are applied on the source code of a module. They allow you to 
pre-process files as you import or “load” them. Thus, loaders are kind of like “tasks” in other build 
tools, and provide a powerful way to handle front-end build steps. Loaders can transform files from 
a different language (like TypeScript) to JavaScript, or inline images as data URLs. Loaders even 
allow you to do things like import CSS files directly from your JavaScript modules!

▶ Example

For example, you can use loaders to tell webpack to load a CSS file or to convert TypeScript to 
JavaScript. To do this, you would start by installing the loaders you need:



Loaders
▶ Using Loaders

There are three ways to use loaders in your application:

➢ Configuration (recommended): Specify them in 
your webpack.config.js file.

➢ Inline: Specify them explicitly in each import statement.

It's possible to specify loaders in an import statement, or any equivalent 
“importing” method. Separate loaders from the resource with !. Each 
part is resolved relative to the current directory.

Options can be passed with a query parameter, 
e.g. ?key=value&foo=bar, or a JSON object, 
e.g. ?{"key":"value","foo":"bar"}.

➢ CLI: Specify them within a shell command.

You can also use loaders through the CLI:

This uses the jade-loader for .jade files, and the style-loader and 
css-loader for .css files.



Loaders
▶ Loader Features

➢ Loaders can be chained. They are applied in a pipeline to the resource. A chain of loaders are 
compiled chronologically. The first loader in a chain of loaders returns a value to the next. At the 
end loader, webpack expects JavaScript to be returned.

➢ Loaders can be synchronous or asynchronous.

➢ Loaders run in Node.js and can do everything that’s possible there.

➢ Loaders accept query parameters. This can be used to pass configuration to the loader.

➢ Loaders can also be configured with an options object.

➢ Normal modules can export a loader in addition to the normal main via package.json with 
the loader field.

➢ Plugins can give loaders more features.

➢ Loaders can emit additional arbitrary files.



Loaders
▶ Resolving Loaders

Loaders follow the standard module resolution. In most cases it will be loaders from the module 
path(think npm install, node_modules).

A loader module is expected to export a function and be written in Node.js compatible JavaScript. They 
are most commonly managed with npm, but you can also have custom loaders as files within your 
application. By convention, loaders are usually named xxx-loader (e.g. json-loader).



Plugins
Plugins are the backbone of webpack. webpack itself is built on the same plugin system that you use in your 
webpack configuration!

They also serve the purpose of doing anything else that a loader cannot do.

▶ Anatomy

A webpack plugin is a JavaScript object that has an apply property. The apply property is called by the 
webpack compiler, giving access to the entire compilation lifecycle.



Plugins
▶ Usage

Since plugins can take arguments/options, you must pass a new instance to the plugins property in your 
webpack configuration.

Depending on how you are using webpack, there are multiple ways to use plugins.



Plugins
➢ Configuration



Thank you


