

TABLE OF CONTENTS

02 03 04

Ol

INTRODUCTION FUNDAMENTALS APPS BY ASP.NET-CORE MAIN FEATURES

“Before Travel”

e ASP: Active Server Pages
Microsoft's server side script engine for
dynamically generated web pages

e .NET: a software framework to create, run and deploy
desktop apps and server based apps

ASP.NET: the extension of the ASP which is part of
the .NET framewaork that simplifies the structure and
creation of web apps

Ol INTRoODUCTION

ASP.NET Core is a cross-platform, high-performance,
open-source framework for building modern,
cloud-enabled, Internet-connected apps.

e Build web apps and services, 0T apps, mobile backends
e Can use favorite tools on Windows, macQS, Linux
e [Deploy to the cloud

Run on .NET Core

1. Why choose ASP.NET Core?

e A unified story for building web Ul and web APIs.

e Architected for testability.

e Razor Pages: make page-focused scenarios easier and more productive.

e Blazor: make it possible to use C# in the browser alongside JavaScript.
Ability to develop and run on Windows, macQS, and Linux.

e (Open-source and community-focused.

e Support for hosting Remote Procedure Call (RPC) services using gRPC.

e A cloud-ready, environment-based configuration system.

e A lightweight, high-performance, and modular HTTP request pipeline.

e Ability to host on the following: Kestrel, IIS, HTTP.sys, Nginx, Apache, Docker
e _Side-by-side versioning.

e Tooling that simplifies modern web development.

2. ASP.NET 4.xvs ASP.NET Core?

VERSIONS PER

PLATFORM MACHINE IDE PERFORMANCE = RUNTIME
ASP.NET Windows, Razor Pages, MVC, : .net-core
CORE macOS, Linux ~~ Web API, SignalR Multiple i < s e runtime
Web Forms,
ASP.NET SignalR, MVC, .net
: Windows Web API, Web single VS Good framewaork
4.X Hooks, Web runtime

Pages

3. .NET Framework vs .NET Core for server apps

When .NET Core? When .NET Framework?
. Cross-platform . .NET framework
2. Microservices 2. 3rd party libraries not available for .NET Core
3. Docker container 3. .NET technologies not available for .NET Core
4. High performance and scalable system 4. Platform that doesn't support .NET Core
5. Side-by-side .net versions per application

02 FUNDAMENTALS

Startup class

Dependency injection. (services)

Middleware

Host

Servers: Kestrel or HTTP.sys

Environments: dev, stage, prod

Logging: Console, Debug, Event Source, Event Log
Routing

Making http requests

Static files

public class Startup
{
public Startup(IConfiguration configuration)

1) STARTUP CLASS S ——

1
J

public IConfiguration Configuration { get; }

WHAT DOES IT DO? public void ConfigureServices(IServiceCollection services)
= {

services.AddRazorPages();

1
J

. Configure the app's services (ConfigureServices) SRBUIE VolA ConFIRure(TAppLiCaLIONAUILST app, IWCBOSTERVLroHaent env

L

2. Create request processing pipeline (Configure) R

.UseDevelopertExceptionPage();

SE RVICE? .UseExceptionHandler("/Error");

.UseHsts();

Reusable component that provides R
. . seHttpsRedirection();
Gpp functlonG“ty UseStaticFiles();

.UseRouting();
.UseAuthorization();
UseEndpoints(endpoints =>

endpoints.MapRazorPages();

2) MIDDLEWARE

WHAT IS IT?

Software that handles requests
and responses

Middleware 1
// logic

next();

// more logic

Response

Middleware 2

// logic

next();

// more logic

Middleware 3

// logic

// more logic

MIDDLEWARE ORDER

Request

2

Response ¢
()<— ExceptionHandler

B
t HSTS HTTP Strict Transport Security
e

HttpsRedirection

v
t Static Files
/L : Routing
v
/t CORS
t v

AUthErtcation Custom middlewares

/L - \f)
Authorization —» Custom] —» Custom.. —> Endpoint

4) 1 J

3) HOST

using (var host = lWebHost.StartWith("http://localhost:8888", app =>

WHAT IS IT? app.Use(next 5>

!
L

return async context =>

Responsible for app startup and (

I|fet|me mGnGgement await context.Response.WriteAsync("Hello World!™);

i3

1))

Console.WriteLine("Use Ctrl-C to shut down the host...");
host.WaitForShutdown();

4) ROUTING

Matches incoming http requests to endpoints and is based on top of middleware,

HOW TO DEFINE:

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)

I
L

if (env.IsDevelopment())

. MapGet
app.UseDeveloperExceptionPage();
2. MapPost }
3. MUDPUt app.UseRouting();
4, MQpDe|ete ?pp-UseEndpoints endpoints =>

1

endpoints.MapGet("/", async context =>

1
await context.Response.lriteAsync("Hello World!");

ENDPOINT

Endpoint is a functionality

app.UseEndpoints(endpoints =>

I
L

e e

endpoints.MapGet("/hello/{name:alpha}", async context =>

var name = context.Request.RouteValues["name"];
await context.Response.WriteAsync($"Hello {name}!");

})s

This Route Template Matches:

. “/hello/Ryan’
2. Any url begins with “/hello/

:alpha means only accept alphabetic characters

ROUTE CONSTRAINT

e int
e ool

e [atetime

e Decimal
e Double
e Float

[

public void Configure(IApplicationBuilder app, IWebHostEnvironment env)

I
L

if (env.IsDevelopment())
f

1
L

Check stage

app.UseDeveloperExceptionPage();

Set to use routing // Matches request to an endpoint.

app.UseRouting();

// Endpoint aware middleware.

SEt UUthentICUtlon & // Middleware can use metadata from the matched endpoint.
quthorizution app.UseAuthentication();

app.UseAuthorization();

// Execute the matched endpoint.

Define bOdy app.UseEndpoints(endpoints =>

r
L

// Configure the Health Check endpoint and require an authorized
endpoints.MapHealthChecks("/healthz").RequireAuthorization();

// Configure another endpoint, no authorization requirements.
endpoints.MapGet("/", async context =>

await context.Response.WriteAsync("Hello World!™);

public class NamedC

I
L

5] HTTP REQUEST private readonly IHttpClientFactory _clientFactory;

public IEnumerable<GitHubPullReqguest> PullRequests { get; private set;

public bool GetPullRequestsError { get; private set; }

Create request using

public bool HasPullRequests => PullRequests.Any();

public N: lientModel(IHttpClientFactory clientFactory)

IHttpClientFactory ¢

_clientFactory = clientFactory;

public async Task OnGet(

/ thod.Get,
Create request : :
Creute CIient var client = _clientFactory.CreateClient("github™);

cu" var response = await client.SendAsync(request);

if (response.IsSuccessStatusCode)

Process response {

r responseStream = it response.Content.ReadAsStreamAsync();
PullRequests = await JsonSerializer.DeserializeAsync
<IEnumerable<GitHubPullRequest>>(responseStream);

GetPullRequestsError = true;
PullRequests = Array.Empty<GitHubPullRequest>();

6) STAT'C F"_ES (Html, Css, Images, JavaScript)

Serve static files

Static file authorization

Enable directory browsing

public void Configure(IApplicationBuilder app)
i
1

app.UseStaticFiles();

[Authorize]

public IActionResult BannerImage()

I

L
var file = Path.Combine(Directory.GetCurrentDirectory(),
"MyStaticFiles”, "images", "bannerl.svg");

i /s

return PhysicalFile(file, "image/svg+xml");

public void ConfigureServi IServiceCollection services)

iy
L

services.AddDirectoryBrowser();

03 APPS PROVIDED BY .NET CORE

ASP.NET Core provides several different types of apps:

Web apps

Web api apps

Real-time apps

Remote procedure call apps

ASP.NET CORE

WEB API APP REAL-TIME APP RPC APPS

BLAZOR

Create a new project

Recent project templates

A list of your recently accessed templates will be
displayed here.

All languages = All platforms = Al project types -

Console App (.NET Core)
A project for creating a command-line application that can run on .NET Core on Windows, Linux and MacOS.

c# Linux macos Windows Console

Console App (.NET Core)

A project for creating a command-line application that can run on .NET Core on Windows, Linux and MacOS.
Visual Basic Windows Linux macOS Console

ASP.NET Core Web Application

Project templates for creating ASP.NET Core web apps and web APIs for Windows, Linux and macOS using .NET Core or .NET Framework. Create web apps with Razor Pages,
MVC, or Single Page Apps (SPA) using Angular, React, or React + Redux.

c# Linux macOS Windows Cloud Service Web

Blazor App

Project templates for creating Blazor apps that run on the server in an ASP.NET Core app or in the browser on WebAssembly. These templates can be used to build web apps
with rich dynamic user interfaces (Uls).

c# Linux macOS Windows Cloud Web
ASP.NET Web Application (.NET Framework)
Project templates for creating ASP.NET applications. You can create ASP.NET Web Forms, MVC, or Web API applications and add many other features in ASP.NET.
Visual Basic Windows Cloud Web
Class Library (.NET Standard)
A project for creating a class library that targets .NET Standard.
[« 2 Android i0os Linux macOS Windows Library
Class Library (.NET Standard)
A project for creating a class library that targets .NET Standard.
Visual Basic Android ios Linux macOS ‘Windows Library
Azure Functions
A template to create an Azure Function project.
c# Azure Cloud
gRPC Service
A project template for creating a gRPC ASP.NET Core service using .NET Core.
c# Linux macos Windows Cloud Service Web

Razor Class Library
A project template for creating a Razor class library.

Configure your new project

ASP.NET Core Web Application ¢

Project name
RazorPagesMovie

Location

E:\web\ASP\

Solution name @

Place solution and project in the same directory

Linux

macOS

Windows

Cloud

Service

Web

Create a new ASP.NET Core web application

.NET Core ~ ASP.NET Core 3.1 -

Empty

An empty project template for creating an ASP.NET Core application. This template does not have any content in it.

APl

A project template for creating an ASP.NET Core application with an example Controller for a RESTFul HTTP service.
This template can also be used for ASP.NET Core MVC Views and Controllers.

Web Application

A project template for creating an ASP.NET Core application with example ASP.NET Razor Pages content.

Web Application (Model-View-Controller)

&

A project template for creating an ASP.NET Core application with example ASP.NET Core MVC Views and
Controllers. This template can also be used for RESTrul HTTP services.

A Angular
A project template for creating an ASP.NET Core application with Angular
@) React.js

v

Authentication

No Authentication

Advanced

Configure for HTTPS

[:‘ Enable Docker Support
(Requires r ktop)

D Enable Razor runtime compilation

Author: Microsoft
Source: .NET Core 3.1.4

Back Create

' Solution Explorer v ax
Q- o-5¢ @ [A

Search Solution Explorer (Ctrl+;) P~

1) WEB APPS (Razor pages, Mvc, Blazor, SPA) : : :
4 E@Ewwj(;rsoot
b Wl lib
B favicon.ico

- Razor Pages can make coding page-focused scenarios easier and 4 Qo

B s . P ©* RazorPagesMovieContext.cs
4 @l Migrations
more productive than using controllers and views. e N
b ©* 20200602070630_InitialCreate.Designer.cs
b #3 InitialCreate
P c* RazorPagesMovieContextModelSnapshot.cs
4 =] Model
4 c* Moviecs
b #3 Movie
&l Pages
4@l Movies
= b Create.cshtml
e Adding a data model G
b Details.cshtml
b Edit.cshtml
e Scaffold the model (CRUD) b B indeccshtm

4 @] Shared

[S

agw - - - - agm _Layout.cshtml
e Initial migration (Add-Migration InitialCreate) B) VeldationScriptsPartil.cshtm
_Viewlmports.cshtml
- - - m - - _ViewStart.cshtml
e Update the db with initial migration (Update-database) B et
&) Index.cshim
b Privacy.cshtml
b &T appsettings.json
4 c* Program.cs
4 %3 Program
@ Main(string[]) : void
@ CreateHostBuilder(string[]) : IHostBuilder
4 C* Startup.cs
4 %3 Startup
@ Startup(IConfiguration)
Configuration : IConfiguration
@ ConfigureServices(IServiceCollection) : voir
@ Configure(lApplicationBuilder, IWebHostE o

4 »

- ASP.NET Core MVC framework is a lightweight, open source, highly testable presentation
framework optimized for use with ASP.NET Core.

routes.MapRoute(name: "Default", template: "{controller=Home}/{action=Index}/{id?}");

[Route("api/[controller]”)]
public class ProductsController : Controller

Routing :

1

[HttpGet("{id}")]
public IActionResult GetProduct(int id)

I
L

33
J

converts client request data (form values, route data, query string

Modelb it parameters, HTTP headers) into objects that the controller can handle

ispl | "Remember me?")
Model validation

bool RememberMe { get;

public async Task<IActionResult> Login(LoginViewModel model, string returnUrl = null)
r
1

if (ModelState.IsValid)
{

L

work with the model

At this point, something failed, redisplay form
return View(model);

Dependency Injection

Filter

@inject Som

<IDOCTYPE html>
<html lang="en">
<head>
<title>@ServiceName.GetTitle</title>
</head>
<body>
<hi>@ServiceName.GetTitle</hi>
</body> St
</html>

[Authorize]

public class AccountController : Controller

- ASP.NET Core Blazor is a framework for building interactive client-side web UI.

It enables to:

Create rich interactive Uls using C# instead of JavaScript
Share server-side and client-side app logic written in .NET
Render the Ul as HTML and CSS for wide browser support, including mobile browsers

Integrate with modern hosting platforms, such as Docker

Advantages of using .NET for client-side web development:

Write code in C# instead of JavaScript

Leverage the existing .NET ecosystem of .NET libraries

Share app logic across server and client

Benefit from .NET's performance, reliability, and security

Stay productive with Visual Studio on Windows, Linux, and macOS

Build on a common set of languages, framewarks, and tools that are stable, feature-rich, and easy to use

<hl style="font-style:@headingFontStyle">@headingText</h1>

headingFontStyle = "italic";
string headingText = "Put on your new Blazor!";

Component

@using BlazorApp.Components

<BlazorApp.Components.MyCoolComponent'/>

<input value="@CurrentValue"
@onchange="@((ChangeEventArgs __e) => CurrentValue =
__e.Value.ToString())" />

Data binding

@ r
@code {

private string CurrentValue { get; set; }

razor
<input type="checkbox" class="form-check-input" @onchange="CheckChanged" />

@code {

Event handling private void CheckChanged()

f
1

1
J

Onlnitialized: when the component is initialized after getting params
SetParameters: Before params are set
Lifecycle OnParametersSet: After params are set

OnAfterRender: After component render

ShouldRender: Force refresh

- Single Page Apps (Angular, React, React with Redux)

JavaScript Services: to make ASP.NET Core as developers’ preferred server side
platform for building SPAs.

e Microsoft.AspNetCore.NodeServices (NodeServices)

e Microsoft.AspNetCore.SpaServices (SpaServices)

Create a new ASP.NET Core web application

NET Core ~ ASP.NET Core 3.1

Web Application b

A project template for creating an ASP.NET Core application with example ASP.NET Razor Pages content.

Web Application (Model-View-Controller)

Authentication

No Authentication

A project template for creating an ASP.NET Core application with example ASP.NET Core MVC Views and

Controllers. This temnlate can also he used for RESTFul HTTP services.

Advanced
A Angular

Configure for HTTPS
A project template for creating an ASP.NET Core application with Angular
@ React.js
A project template for creating an ASP.NET Core application with React.js

(3\33 React.js and Redux

A project template for creating an ASP.NET Core application with React js and Redux

- Session-and State management

State management approaches:
e Cookies : Http Cookies
e Session state : Http Cookies and Server-side app code (store user data)
e TempData : Http Cookies or session state
e Query strings : Http Query strings
e Hidden fields : Http form fields
e HttpContext.ltems : Server-side app code

e Cache : Server-side app code

2] WEB APl APPS (RESTful services by C#)

- ASP.NET Core supports creating RESTful services, also known as web APIs, using C#.

HTTP request

Steps to create Web API with ASP.NET Core:
e Create a Web API project Client

{Nan'e "todol"

e Add a model class and a database context R .
serialize model read/write
e Scaffold a controller with CRUD methods

e Configure routing, URL paths, and return values Datla access
ayer

Web API additional features: B
e Working with MongoDB

e Documentation using Swagger/OpenAPI (Swashbuckle.Asp.NetCore)

3) REAL-TIME APPS

- ASP.NET Core SignalR ?
open-source library that simplifies adding real-time web functionality to apps.
Real-time web functionality enables server-side code to push content to clients instantly.

When to use SignalR:
e High frequency updates from the server
e Dashboards and monitoring apps
e Collaborative apps

e Apps with notifications

Features of ASP.NET Core SignalR:
e Handles connection management automatically
e Sends messages to all connected clients simultaneously. For example, a chat room
e Sends messages to specific clients or groups of clients

e Scales to handle increasing traffic

- Transports & Hubs

Transport methods between server and client:
e WebSockets
e Server-Sent Events
e Long Polling

e Scales to handle increasing traffic

SignalR uses hubs to communicate between servers and clients.

Hub: a high-level pipeline that allows a client and server to call methods on each other.

4) REMOTE PROCEDURE CALL APPS

- gRPC: high-performance Remote Procedure Call (RPC) framework.

Caller (client process) Callee (Server process)

Request message
(contains remote
procedure's parameter)

Call procedure Y \ E

waiting for reply |

Resume execution

'
Remote procedure call model '

]

Reply message
(contains result of
procedure execution)

E waiting for request

Receive request and
start procedure execution

Procedure executes

Send reply

Ewaiting for next request

Main benefits of gRPC:
e Modern, high-performance, lightweight RPC framework

e Contract-first APl development, using Protocol Buffers by
default, allowing for language agnostic implementations

e Tooling available for many languages to generate
strongly-typed servers and clients

e Supports client, server, and bi-directional streaming calls

e Reduced network usage with Protobuf binary serialization

04 MAINFEATURES

ASP.NET Core also provides other main features:

e Data access
e Host & deploy
e Security and ldentity

1) DATA ACCESS

- EF Core(Entity Framework Core): lightweight, extensible, open source and cross-platform
version of the popular Entity Framework data access technology.

Properties
¢¢ CourselD
H Title

& Credits

Navigation Properties

\E] Enrcllments

Properties

¢ EnrollmentiD
& CourselD

H StudentD
& Grade

Navigation Properties

y’a Course
y'T:I Student

Properties

ot ID

& LastName

H FirstMidName
& EnrollmentDate

Navigation Properties

y’a Enrollments

2) HOST AND DEPLOY

General steps:

e Deploy the published app to a folder on the hosting server

e Set up a process manager that starts the app when requests arrive and restarts the app after
it crashes or the server reboots
Linux: Nginx, Apache
Windows: IIS, Windows Service

e For configuration of a reverse proxy, set up a reverse proxy to forward requests to the app

Reverse proxy: a special type of proxy server that hides the target server to the client.

How to publish to Azure app service:
e With Visual Studio
e With the CLI
e Visual Studio and Git
e Continuous integration and deployment with Azure pipelines

3) SECURITY AND IDENTITY

Identity methods:

e Built-in identity providers
e Third-party identity services: Facebook, Twitter, LinkedIn

- Authentication & Authorization

authentication: a process in which a user provides credentials that are then compared to those
stored in an operating system, database, app or resource

authorization: actions the user can perform to which objects inside that space (server,
database, or app)

- Security issues:
e - Cross-Site Request Forgery (XSRF/CSRF)

e open redirection attacks in ASP.NET Core
e cross-Site Scripting (XSS) in ASP.NET Core

301
Redirect
Malicious Site

Open redirection attack

Thank you!

