
ASP.NET Core

2020.5.21

TABLE OF CONTENTS

02 03 0401

introduction fundamentals Apps by asp.net core main features

“Before Travel”

● ASP: Active Server Pages
Microsoft’s server side script engine for
dynamically generated web pages

● .NET: a software framework to create, run and deploy
desktop apps and server based apps

● ASP.NET: the extension of the ASP which is part of
the .NET framework that simplifies the structure and
creation of web apps

ASP.NET Core is a cross-platform, high-performance,
open-source framework for building modern,

cloud-enabled, Internet-connected apps.

● Build web apps and services, IoT apps, mobile backends

● Can use favorite tools on Windows, macOS, Linux

● Deploy to the cloud

● Run on .NET Core

INTRODUCTION01

1. Why choose ASP.NET Core?
● A unified story for building web UI and web APIs.

● Architected for testability.

● Razor Pages: make page-focused scenarios easier and more productive.

● Blazor: make it possible to use C# in the browser alongside JavaScript.

Ability to develop and run on Windows, macOS, and Linux.

● Open-source and community-focused.

● Support for hosting Remote Procedure Call (RPC) services using gRPC.

● A cloud-ready, environment-based configuration system.

● A lightweight, high-performance, and modular HTTP request pipeline.

● Ability to host on the following: Kestrel, IIS, HTTP.sys, Nginx, Apache, Docker

● Side-by-side versioning.

● Tooling that simplifies modern web development.

2. ASP.NET 4.x vs ASP.NET Core?

PLATFORM UI Versions per
machine IDE performance runtime

ASP.NET
CORE

Windows,
macOS, Linux

Razor Pages, MVC,
Web API, SignalR Multiple VS, VS Code Faster .net core

runtime

ASP.NET
4.X

Windows

Web Forms,
SignalR, MVC,
Web API, Web
Hooks, Web

Pages

single VS Good
.net

framework
runtime

3. .NET Framework vs .NET Core for server apps

When .NET Core?

1. Cross-platform
2. Microservices
3. Docker container
4. High performance and scalable system
5. Side-by-side .net versions per application

When .NET Framework?

1. .NET framework
2. 3rd party libraries not available for .NET Core
3. .NET technologies not available for .NET Core
4. Platform that doesn’t support .NET Core

● Startup class
● Dependency injection (services)
● Middleware
● Host
● Servers: Kestrel or HTTP.sys
● Environments: dev, stage, prod
● Logging: Console, Debug, Event Source, Event Log
● Routing
● Making http requests
● Static files

fundamentals02

1. Configure the app’s services (ConfigureServices)

2. Create request processing pipeline (Configure)

1) Startup class

service?
Reusable component that provides
app functionality

What does it do?

2) middleware

What is it?
Software that handles requests
and responses

Middleware order

HTTP Strict Transport Security

3) host

What is it?
Responsible for app startup and
lifetime management

4) routing
Matches incoming http requests to endpoints and is based on top of middleware.

How to define:

1. MapGet

2. MapPost

3. MapPut

4. MapDelete

Endpoint

Endpoint is a functionality

This Route Template Matches:

1. `/hello/Ryan`

2. Any url begins with `/hello/`

:alpha means only accept alphabetic characters

● int

● bool

● Datetime

● Decimal

● Double

● Float

● ...

Route constraint

Check stage

Set to use routing

Set authentication &
authorization

Define body

5) Http request

Create request

Create request using

IHttpClientFactory

Create client
call

Process response

6) Static files (Html, Css, Images, JavaScript)

Serve static files

Static file authorization

Enable directory browsing

ASP.NET Core provides several different types of apps:

● Web apps
● Web api apps
● Real-time apps
● Remote procedure call apps

Apps provided by .net core03

Web app Web api app

ASP.NET Core

Real-time app RPC apps

MVCrazor blazor SPA

1) Web apps (Razor pages, MVC, Blazor, SPA)

- Razor Pages can make coding page-focused scenarios easier and
more productive than using controllers and views.

● Adding a data model

● Scaffold the model (CRUD)

● Initial migration (Add-Migration InitialCreate)

● Update the db with initial migration (Update-database)

- ASP.NET Core MVC framework is a lightweight, open source, highly testable presentation
framework optimized for use with ASP.NET Core.

Routing

Model binding converts client request data (form values, route data, query string
parameters, HTTP headers) into objects that the controller can handle

Model validation

Dependency Injection

Filter

- ASP.NET Core Blazor is a framework for building interactive client-side web UI.

It enables to:
● Create rich interactive UIs using C# instead of JavaScript

● Share server-side and client-side app logic written in .NET

● Render the UI as HTML and CSS for wide browser support, including mobile browsers

● Integrate with modern hosting platforms, such as Docker

Advantages of using .NET for client-side web development:
● Write code in C# instead of JavaScript

● Leverage the existing .NET ecosystem of .NET libraries

● Share app logic across server and client

● Benefit from .NET's performance, reliability, and security

● Stay productive with Visual Studio on Windows, Linux, and macOS

● Build on a common set of languages, frameworks, and tools that are stable, feature-rich, and easy to use

Component
@using BlazorApp.Components

...

<BlazorApp.Components.MyCoolComponent />

Data binding

Event handling

Lifecycle

OnInitialized: when the component is initialized after getting params

SetParameters: Before params are set

OnParametersSet: After params are set

OnAfterRender: After component render

ShouldRender: Force refresh

- Single Page Apps (Angular, React, React with Redux)

JavaScript Services: to make ASP.NET Core as developers’ preferred server side

platform for building SPAs.
● Microsoft.AspNetCore.NodeServices (NodeServices)

● Microsoft.AspNetCore.SpaServices (SpaServices)

- Session and State management

State management approaches:

● Cookies : Http Cookies

● Session state : Http Cookies and Server-side app code (store user data)

● TempData : Http Cookies or session state

● Query strings : Http Query strings

● Hidden fields : Http form fields

● HttpContext.Items : Server-side app code

● Cache : Server-side app code

2) Web API apps (RESTful services by C#)

Steps to create Web API with ASP.NET Core:
● Create a Web API project

● Add a model class and a database context

● Scaffold a controller with CRUD methods

● Configure routing, URL paths, and return values

Web API additional features:
● Working with MongoDB

● Documentation using Swagger/OpenAPI (Swashbuckle.Asp.NetCore)

- ASP.NET Core supports creating RESTful services, also known as web APIs, using C#.

3) Real-time apps
- ASP.NET Core SignalR ?
 open-source library that simplifies adding real-time web functionality to apps.
 Real-time web functionality enables server-side code to push content to clients instantly.

When to use SignalR:
● High frequency updates from the server

● Dashboards and monitoring apps

● Collaborative apps

● Apps with notifications

Features of ASP.NET Core SignalR:
● Handles connection management automatically

● Sends messages to all connected clients simultaneously. For example, a chat room

● Sends messages to specific clients or groups of clients

● Scales to handle increasing traffic

Transport methods between server and client:
● WebSockets

● Server-Sent Events

● Long Polling

● Scales to handle increasing traffic

- Transports & Hubs

SignalR uses hubs to communicate between servers and clients.

Hub: a high-level pipeline that allows a client and server to call methods on each other.

4) Remote procedure call apps

- gRPC: high-performance Remote Procedure Call (RPC) framework.

Main benefits of gRPC:
● Modern, high-performance, lightweight RPC framework

● Contract-first API development, using Protocol Buffers by

default, allowing for language agnostic implementations

● Tooling available for many languages to generate

strongly-typed servers and clients

● Supports client, server, and bi-directional streaming calls

● Reduced network usage with Protobuf binary serialization

R

P

C

ASP.NET Core also provides other main features:

● Data access
● Host & deploy
● Security and Identity

main features04

1) data access

- EF Core(Entity Framework Core): lightweight, extensible, open source and cross-platform
version of the popular Entity Framework data access technology.

2) host and deploy
General steps:

● Deploy the published app to a folder on the hosting server
● Set up a process manager that starts the app when requests arrive and restarts the app after

it crashes or the server reboots
Linux: Nginx, Apache
Windows: IIS, Windows Service

● For configuration of a reverse proxy, set up a reverse proxy to forward requests to the app

Reverse proxy: a special type of proxy server that hides the target server to the client.

How to publish to Azure app service:
● With Visual Studio
● With the CLI
● Visual Studio and Git
● Continuous integration and deployment with Azure pipelines

3) security and identity
Identity methods:

● Built-in identity providers
● Third-party identity services: Facebook, Twitter, LinkedIn

authentication: a process in which a user provides credentials that are then compared to those
stored in an operating system, database, app or resource

authorization: actions the user can perform to which objects inside that space (server,
database, or app)

- Authentication & Authorization

- Security issues:
● Cross-Site Request Forgery (XSRF/CSRF)

● open redirection attacks in ASP.NET Core

● cross-Site Scripting (XSS) in ASP.NET Core

Open redirection attack

Thank you!

