
NgRx
Reactive State for Angular



State

Data

What is NgRx?

TABLE OF CONTENTS

View

01

02

03

04



What is NgRx?
01



NgRx (Angular Reactive Extensions)

NgRx is a framework for building reactive applications in Angular. NgRx is 
a state management system that is based on the Redux pattern. NgRx 
provides libraries for:

● Managing global and local state

● Isolation of side effects to promote a cleaner component architecture

● Entity collection management

● Integration with the Angular Router

● Developer tooling that enhance developers experience when building 

many different types of applications



State
02



Packages of State

Store Effects Router Store

Entity ComponentStore



Why use NgRx Store for State Management?

NgRx Store provides state management for
creating maintainable explicit applications, by
single state and the use of actions in order to
express state changes.



When Should I Use NgRx Store for State Management

A good substance that might answer the question "Do I need NgRx", is 
the SHARI principle:

● Shared: state that is accessed by many components and services.

● Hydrated: state that is persisted and rehydrated from external storage.

● Available: state that needs to be available when re-entering routes.

● Retrieved: state that must be retrieved with a side-effect.

● Impacted: state that is impacted by actions from other sources.



@ngrx/store

Store is RxJS powered global state management for Angular applications, 
inspired by Redux. Store is a controlled state container designed to help 
write performant, consistent applications on top of Angular.

● Actions describe unique events that are dispatched from components 
and services.

● State changes are handled by pure functions called reducers that take 
the current state and the latest action to compute a new state.

● Selectors are pure functions used to select, derive and compose 
pieces of state.

● State is accessed with the Store, an observable of state and an 
observer of actions.





Action

● Upfront - write actions before developing features to understand and 
gain a shared knowledge of the feature being implemented.

● Divide - categorize actions based on the event source.
● Many - actions are inexpensive to write, so the more actions you write, 

the better you express flows in your application.
● Event-Driven - capture events not commands as you are separating the 

description of an event and the handling of that event.
● Descriptive - provide context that are targeted to a unique event with 

more detailed information you can use to aid in debugging with the 
developer tools.



Selectors

● Portability

● Memoization

● Composition

● Testability

● Type Safety



@ngrx/store-devtools



@ngrx/effects

Effects are an RxJS powered side effect model for Store. Effects use 
streams to provide new sources of actions to reduce state based on 
external interactions such as network requests, web socket messages and 
time-based events.

● Effects isolate side effects from components, allowing for 
more pure components that select state and dispatch actions.

● Effects are long-running services that listen to an observable 
of every action dispatched from the Store.

● Effects filter those actions based on the type of action they are 
interested in. This is done by using an operator.

● Effects perform tasks, which are synchronous or asynchronous and 
return a new action.







@ngrx/router-store



@ngrx/entity

Entity promotes the use of plain JavaScript objects when managing 
collections. ES6 class instances will be transformed into plain JavaScript 
objects when entities are managed in a collection. This provides you with 
some assurances when managing these entities: 

● Guarantee that the data structures contained in state don't themselves 
contain logic, reducing the chance that they'll mutate themselves.

● State will always be serializable allowing you to store and rehydrate 
from browser storage mechanisms like local storage.

● State can be inspected via the Redux Devtools.









@ngrx/component-store

ComponentStore is a stand-alone library that helps to manage local / 
component state. It's an alternative to reactive push-based "Service with a 
Subject" approach.





Data
03



@ngrx/data

• automates the creation of actions, reducers, effects, dispatchers, and 
selectors for each entity type

• provides default HTTP GET, PUT, POST, and DELETE methods for each 
entity type

• holds entity data as collections within a cache which is a slice of NgRx
store state

• supports optimistic and pessimistic save strategies
• enables transactional save of multiple entities of multiple types in the 

same request
• makes reasonable default implementation choices
• offers numerous extension points for changing or augmenting those 

default behaviors



View
04



@ngrx/component

Component is a set of 
primitive reactive helpers 
to enable fully reactive, 
Zoneless applications. 
They give more control 

over rendering, and provide 
further reactivity for 

Angular applications.



THANKS!
Does anyone have any questions?

blog.hg-world.com


