avine o

BUI|d real-t _~

/ ’
SocketCluster is an'¢ qpen source real-tlme,ﬁmeworkfpr Node.js. It.supports ithdigeetclient-server
communication and gro commumcatlon vm’pub/SuBch‘anneIs Itis demggnd to ez e-apy number of
. LQ; a Phcesges/hésts : i S i
v ‘. ¥

- 7 \ - \»‘

Introduction

SocketCluster is a fast, highly scalable SocketCluster works like a pub/sub system (which extends
HTTP + WebSockets server environment all the way to the browser/IoT device) - It only delivers
which lets you build multi-process particular events to clients who actually need them.

real-time systems that make use of all
CPU cores on a machine/instance. It
removes the limitations of having to run
your Node server as a single process and
makes your backend resilient by
automatically recovering from worker
crashes.

You can use SocketCluster as a standalone framework (to act
as both a HTTP and WebSocket server) or use it only as a
real-time engine and serve the client script separately.

SC is ideal for building highly flexible, resilient and
scalable chat systems.
- SCisideal for building multi-player online games.

!

Technical Features

(Sesssssss

=

(S esescmes

Scales linearly as you add more CPU cores and workers.

s

@8[] 8\

(S esssssss

Scales horizontally across multiple machines.

Resilient on both the client and backend - Process crashes, lost connections and other failures are
handled seamlessly.

Supports custom codecs for compressing messages during transmission.

Supports both pub/sub channels and direct client-server communication (for RPC).
Authentication engine compliant with JSON Web Token (JWT).

Authorization via middleware functions (access control for emit, publish in, publish out, subscribe and
handshake).

Client sockets automatically reconnect (by default) if they lose the connection.

SocketCluster is a pure WebSocket (no polling hack) solution.

Designed to work alongside any database/datastore.

Open source alternative to pub/sub 'as-a-service'.

Optimized to run and autoscale on Kubernetes.

https://tools.ietf.org/html/draft-ietf-oauth-json-web-token-32

What is it good for?

Single-page apps which need to render live data.

Finance, cryptocurrencies and other blockchain applications.

Chatbots and other chat-related applications.

loT devices.

Mobile apps built with web technologies such as React Native or lonic/Cordova.
Multiplayer Online Games.

Any kind of real-time app or service which needs to scale to millions of users.

Realtime SDKs simplified

& ©

Js client Java/Android Client Python Client .Net Client GO client Swift/iOS client

& o C <« @

Ruby client C client (Beta) C++ client (Beta) Unity client Unreal Engine client

Getting started

To get started with SocketCluster, you need to have Node.js installed.

Once you have Node installed, you can install SocketCluster.
There are two ways to install SocketCluster -

1. You can install the client and server separately (this may be better if you have more specific
requirements).

To install SocketCluster as a standalone server and client, follow the instructions from these 2
repositories.
https://qithub.com/SocketCluster/socketcluster-server

https://qithub.com/SocketCluster/socketcluster-client

2. Youcaninstall it as a framework (this is the simplest way)
To install it as a framework (recommended):

npm install -g socketcluster

https://github.com/SocketCluster/socketcluster-server
https://github.com/SocketCluster/socketcluster-client

Once installed, the socketcluster create command will create a fresh SocketCluster installation.
For example, socketcluster create myApp will create a directory inside your current working
directory called myApp

socketcluster create myApp

e When this is done, you can navigate to myapp and run your server immediately using node server.ds

node server.js

e You can connect to your server by navigating to http://localhost:8000/ in your browser.

To test SocketCluster's real-time features, you can open your browser's developer console and enter

2 0

// Use socketCluster.connect() if socketcluster-client < v10.0.0

var socket = socketCluster.create();
socket.emit('sampleClientEvent', {message: 'This is an object with a message property'});

Here is a sample (basic) server. js file (note that the default one which comes
with the framework might be more detailed - See here).

var SocketCluster = require('socketcluster');
var socketCluster = new SocketCluster({
workers: 1, // Number of worker processes
es

brokers: 1, // Number of broker process
port: 8000, // The port number on which your server should listen
appName: 'myapp', // A unique name for your app

// Switch wsEngine to 'sc-uws' for a performance boost (beta)
wsEngine: 'ws',

/* A JS file which you can use to configure each of your

* workers/servers — This is where most of your backend code should go

/
*/

workerController: _ _dirname + '/worker.js',

/* JS file which you can use to configure each of your

x brokers — Useful for scaling horizontally across multiple machines (optional)
*/

brokerController: _ dirname + '/broker.js',

// Whether or not to reboot the worker in case it crashes (aults to true)
rebootWorkerOnCrash: true

+);

https://github.com/SocketCluster/socketcluster/blob/master/sample/server.js

// Server code
app.use(serveStatic(__dirname + '/public'));

httpServer.on('req', app);

// Server code
var count = 0;

scServer.on('connection', function (socket) {
TiG e

socket.on('ping', function (data) {
count++;
console.log('PING', data);
scServer.exchange.publish('pong', count);
});
s

// Client code
socket.emit('ping', 'This is a PING message')

// Server code
scServer.exchange.publish('pong', count);

// Client code
// New API as of SocketCluster v1.0.0.
var pongChannel = socket.subscribe('pong’');

pongChannel.watch(function (count) {
console. log('Client received data from pong channel:', count);

F)

// Client code
socket.unsubscribe('pong');

// Client code
socket.publish('pong', 'This PONG event comes from a client');

// Client code
pongChannel.publish('This PONG event comes from a client');

Summary

The socket.emit(event, data) function allows you to send messages between 1 client
socket and 1 matching server socket (1 client socket 2 1 server socket — One to one
communication between client and server).

e The socket.publish(event, data) and channel.publish(data) functions allow you to send
group messages between multiple client sockets (n client sockets 2 n client sockets -

Many to many communication directly between clients). As shown earlier, you can also
call publish from the server using the exchange object:

scServer.exchange.publish('foo', 123);

You can also use publish for one to one communication between two clients but you should setup
some middleware to make sure that only the two authorized clients can share the same channel

SocketCluster pub/sub architecture

000 00 00 000

000 00 00_000

= Channel 1

= Channel 3
= Channel 4

Component of SocketCluster

The component of SocketCluster, which runs a SocketCluster server, which is
generated in the server process.

1. The main process (Server.js) where everything starts, you can set the
parameters, and will call Workers and Brokers

2.Workers: In the workerController you can set the HTTP server logic, as well as
manage SocketCluster real-time connections and events (sending broadcasts,
etc.)

3.Brokers: Mainly used inside SocketCluster, allowing efficient sharing of channel
data between different workers, also using its session data and horizontally
expanding nodes among multiple servers

Method of sending a message

Publish: socket.publish and channel.publish allow a set of messages to be sent
to different clients, ie (n client sockets 2 n client sockets - Many to many
communication directly between clients)

e Emit: allows messages to be sent on one client and one Socket server (1 client
socket 2 1 server socket — One to one communication between client and
server)

Channel : Main

Client

Channel : Main

Client

A

| Sgcketglustgr |

l Server

|
\

Channel . Main

Client

N client sockets 2 N client sockets
Many to many communication directly between clients

Channel : Other

Client

Channel : Main

k4

Client

Channel : Test

Client

1 client socket 2 1 server socket
One to one communication between client and server

Channel : Main Channel : Other

Client Client
Channel : Main i ~ Channel : Main
Client SocketCluster Client
® Server

Channel : Main

Channel : Test

Client :
Client

THANK YOU.

